1,875 research outputs found

    Spatial mode storage in a gradient echo memory

    Full text link
    Three-level atomic gradient echo memory (lambda-GEM) is a proposed candidate for efficient quantum storage and for linear optical quantum computation with time-bin multiplexing. In this paper we investigate the spatial multimode properties of a lambda-GEM system. Using a high-speed triggered CCD, we demonstrate the storage of complex spatial modes and images. We also present an in-principle demonstration of spatial multiplexing by showing selective recall of spatial elements of a stored spin wave. Using our measurements, we consider the effect of diffusion within the atomic vapour and investigate its role in spatial decoherence. Our measurements allow us to quantify the spatial distortion due to both diffusion and inhomogeneous control field scattering and compare these to theoretical models.Comment: 11 pages, 9 figure

    Viscous fingering in liquid crystals: Anisotropy and morphological transitions

    Get PDF
    We show that a minimal model for viscous fingering with a nematic liquid crystal in which anisotropy is considered to enter through two different viscosities in two perpendicular directions can be mapped to a two-fold anisotropy in the surface tension. We numerically integrate the dynamics of the resulting problem with the phase-field approach to find and characterize a transition between tip-splitting and side-branching as a function of both anisotropy and dimensionless surface tension. This anisotropy dependence could explain the experimentally observed (reentrant) transition as temperature and applied pressure are varied. Our observations are also consistent with previous experimental evidence in viscous fingering within an etched cell and simulations of solidification.Comment: 12 pages, 3 figures. Submitted to PR

    Using Positive Youth Development Constructs to Design a Money Management Curriculum for Junior Secondary School Students in Hong Kong

    Get PDF
    This paper aims to discuss the relationships between the selected positive youth development constructs and the enhancement of Hong Kong junior secondary school students' money management skills, values, and attitudes. Various issues of money management of adolescents are reviewed. These issues include the need for money management programs for adolescents, the content and coverage of an appropriate money management program, and its relationships with the selected positive youth development constructs. The curriculum units for secondary 3 students are taken as examples to illustrate the design of the program. It is believed that promoting cognitive competence, self-efficacy, and spirituality could be an effective way to enhance students' money management skills, values, and attitudes, thus preparing them better for facing the finance-related issues in life

    Using Positive Youth Development Constructs to Design a Drug Education Curriculum for Junior Secondary Students in Hong Kong

    Get PDF
    This paper outlines the design of a new curriculum for positive youth development (P.A.T.H.S. II) in Hong Kong. The paper discusses the conceptual base for designing a drug-education curriculum for junior-secondary students using four positive youth development constructs—cognitive competence, emotional competence, beliefs in the future, and self-efficacy. The program design is premised on the belief that adolescents do have developmental assets; therefore, the curriculum is designed to develop their psychosocial competencies. The goal of the curriculum is to develop the selfhood of these youths and ultimately achieve the goal of successful adolescent development

    Knowledge, Attitudes, and Practice of Pelvic Floor Muscle Training in People With Spinal Cord Injury: A Cross-Sectional Survey

    Get PDF
    BackgroundThere is emerging evidence that pelvic floor muscle training (PFMT) may be useful for treating some urogenital conditions in people with spinal cord injury (SCI). Future clinical investigations would benefit from understanding the extent to which people with SCI are aware of and practicing PFMT, and their attitude toward this therapy.ObjectiveThe goal of this study was to assess the knowledge, attitudes, and practices related to PFMT among people with SCI.MethodsWe distributed an internet survey internationally via SCI related organizations for 2 months. We used descriptive statistics to summarize each survey item, and Chi-square and Mann-Whitney U tests to explore the differences in results between sexes and level of motor-function.ResultsComplete data from 153 respondents were analyzed. Sixty-two percent of respondents were female and 71% reported having complete paralysis. More than half of respondents reported being aware of PFMT (63%); more females than males reported knowledge of PFMT (p = 0.010). Females (p = 0.052) and people with partial paralysis (p = 0.008) reported a stronger belief that they would benefit from PFMT. Few people with SCI had practiced PFMT (20%), and of those who practiced, most of them had SCI resulting in partial paralysis (p = 0.023).ConclusionsWhile people with SCI may be aware of and have favorable attitudes toward PFMT, few had practiced PFMT and there were notable differences in attitudes toward PFMT depending on the sex and level of motor function of the respondents

    Creation and Initial Validation of the International Dysphagia Diet Standardisation Initiative Functional Diet Scale

    Get PDF
    OBJECTIVE: To assess consensual validity, interrater reliability, and criterion validity of the International Dysphagia Diet Standardisation Initiative Functional Diet Scale, a new functional outcome scale intended to capture the severity of oropharyngeal dysphagia, as represented by the degree of diet texture restriction recommended for the patient. DESIGN: Participants assigned International Dysphagia Diet Standardisation Initiative Functional Diet Scale scores to 16 clinical cases. Consensual validity was measured against reference scores determined by an author reference panel. Interrater reliability was measured overall and across quartile subsets of the dataset. Criterion validity was evaluated versus Functional Oral Intake Scale (FOIS) scores assigned by survey respondents to the same case scenarios. Feedback was requested regarding ease and likelihood of use. SETTING: Web-based survey. PARTICIPANTS: Respondents (N=170) from 29 countries. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Consensual validity (percent agreement and Kendall tau), criterion validity (Spearman rank correlation), and interrater reliability (Kendall concordance and intraclass coefficients). RESULTS: The International Dysphagia Diet Standardisation Initiative Functional Diet Scale showed strong consensual validity, criterion validity, and interrater reliability. Scenarios involving liquid-only diets, transition from nonoral feeding, or trial diet advances in therapy showed the poorest consensus, indicating a need for clear instructions on how to score these situations. The International Dysphagia Diet Standardisation Initiative Functional Diet Scale showed greater sensitivity than the FOIS to specific changes in diet. Most (\u3e70%) respondents indicated enthusiasm for implementing the International Dysphagia Diet Standardisation Initiative Functional Diet Scale. CONCLUSIONS: This initial validation study suggests that the International Dysphagia Diet Standardisation Initiative Functional Diet Scale has strong consensual and criterion validity and can be used reliably by clinicians to capture diet texture restriction and progression in people with dysphagia

    Experimental demonstration of a squeezing enhanced power recycled Michelson interferometer for gravitational wave detection

    Get PDF
    Interferometric gravitational wave detectors are expected to be limited by shot noise at some frequencies. We experimentally demonstrate that a power recycled Michelson with squeezed light injected into the dark port can overcome this limit. An improvement in the signal-to-noise ratio of 2.3dB is measured and locked stably for long periods of time. The configuration, control and signal readout of our experiment are compatible with current gravitational wave detector designs. We consider the application of our system to long baseline interferometer designs such as LIGO.Comment: 4 pages 4 figure

    Asymptotic function for multi-growth surfaces using power-law noise

    Full text link
    Numerical simulations are used to investigate the multiaffine exponent αq\alpha_q and multi-growth exponent βq\beta_q of ballistic deposition growth for noise obeying a power-law distribution. The simulated values of βq\beta_q are compared with the asymptotic function βq=1q\beta_q = \frac{1}{q} that is approximated from the power-law behavior of the distribution of height differences over time. They are in good agreement for large qq. The simulated αq\alpha_q is found in the range 1qαq2q+1\frac{1}{q} \leq \alpha_q \leq \frac{2}{q+1}. This implies that large rare events tend to break the KPZ universality scaling-law at higher order qq.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Walking with head-mounted virtual and augmented reality devices : effects on position control and gait biomechanics

    Get PDF
    What was once a science fiction fantasy, virtual reality (VR) technology has evolved and come a long way. Together with augmented reality (AR) technology, these simulations of an alternative environment have been incorporated into rehabilitation treatments. The introduction of head-mounted displays has made VR/AR devices more intuitive and compact, and no longer limited to upper-limb rehabilitation. However, there is still limited evidence supporting the use of VR and AR technology during locomotion, especially regarding the safety and efficacy relating to walking biomechanics. Therefore, the objective of this study is to explore the limitations of such technology through gait analysis. In this study, thirteen participants walked on a treadmill in normal, virtual and augmented versions of the laboratory environment. A series of spatiotemporal parameters and lower-limb joint angles were compared between conditions. The center of pressure (CoP) ellipse area (95% confidence ellipse) was significantly different between conditions (p = 0.002). Pairwise comparisons indicated a significantly greater CoP ellipse area for both the AR (p = 0.002) and VR (p = 0.005) conditions when compared to the normal laboratory condition. Furthermore, there was a significant difference in stride length (p0.082), except for maximum ankle plantarflexion (p = 0.001). These differences in CoP ellipse area indicate that users of head-mounted VR/AR devices had difficulty maintaining a stable position on the treadmill. Also, differences in the gait parameters suggest that users walked with an unusual gait pattern which could potentially affect the effectiveness of gait rehabilitation treatments. Based on these results, position guidance in the form of feedback and the use of specialized treadmills should be considered when using head-mounted VR/AR devices
    corecore